ON REGISTER

KORUS S Y S T E M

The KORUS System was born with the aim of providing complete and certified solutions for an increasingly personalized intervention. The system comprises: UNCEMENTED KORUS, due to the model with CCD angle 135° and 125°, available with o r without colletto o CEMENTED KORUS, two models with CCD angle 135° and 125°, also available with distal centralizer o KORUS TITAN, two models with CCD angle 135° and 125°

UNCEMENTED KORUS

The uncemented Korus model, in versions without colletto and with CCD angles 135° and 125°, is coated with a layer of Hydroxyapatite (HA) with a thickness of $100\pm 20\mu m$. The combination of the tracked macrostructure, horizontal and vertical sweep, and HA cladding was designed to promote the stability of the empire.

AVAILABLE SIZES

The uncemented Korus stem is available in versions with CCD angles of 135° and 125°, with or without collar, in 11 sizes.

SQUARE DISTAL SECTION Provides rotational stability

without contact with the cortex

COVERAGE and MATERIAL

The Korus Uncemented stem is made from titanium alloy Ti6Al4V grade 5 ELI (ISO 5832/3). Finish: hydroxyapatite outer coating

DESIGN

Vertical and horizontal grooves: increase the contact surface and guarantee axial and rotational stability

STEP GEOMETRY

Promotes better grip Perform anti-varo action Provides a support surface for the discharge of axial components of forces

COLLAR

Increases rotational stability. Provides additional axial support.Allows optimal load transfer to o the limestone .The size of the collar increases as the size increases

SHOULDER

Low lateral shoulder profile allows for easy insertion and a reduced incision

TRAPEZOIDAL PROXIMAL SECTION

Resists axial and torsional stress and facilitates osseointegration NECK GEOMETRY Improves joint flexibility Increases ROM • CCD angle 135° and 125° • Mirror finish

CEMENTED KORUS

The Korus cemented stem is available in versions with CCD angles of 135° and 125°, in 11 sizes

LOW TROCHANTERIC INVASIVITY

Easy insertion and reduced incision, especially in case of anterior approach

MATERIAL

The Korus Cemented Rod is manufactured from stainless steel with a high nitrogen content (ISO 5832-9). Finish: mirror to minimize abrasion on **SHOULDER**

Low lateral shoulder profile allows for easy insertion and a reduced incision

AVAILABLE SIZES

The cemented Korus stem with or without distal centering device is available, in versions with CCD angles of 135° and 125°, in 11 sizes

DISTAL CENTER

PMMA and/or Polyethylene (UHMWPE, ISO 5834/2)

DIAPHYSEARY WEDGE SHAPE

Ensures excellent rotational stability Facilitates the insertion of the rod and reduces the stresses acting on the concrete layer

KORUS TITAN

KORUS TITAThe Korus Titan stem, in versions with CCD angles of 135° and 125° , is coated in the metaphyseal region with a layer of Y367 APS Titanium with a thickness of $300\pm75\mu$ m.

AVAILABLE SIZES

The Korus Titan rod is available, in versions with CCD angles of 135° and 125°, in 11 sizes

SQUARE DISTAL SECTION Provides rotational stability

without contact with the cortex

DISTAL SECTION Glass bead treatment

COVERAGE AND MATERIAL

The Korus TITAN stem is made from ELI grade 5 Ti6Al4V titanium alloy (ISO 5832/3). Finishing the metaphyseal area in Porous Titanium Plasma Spray: Titanium Y367 APS

TRAPEZOIDAL PROXIMAL SECTION

Resists axial and torsional stress and facilitates osseointegration

NECK GEOMETRY

- •Improves joint flexibility
- Increase ROM
- CCD angle 135° and 125°
- • Mirror finish

STEP GEOMETRY

Promotes better grip Perform an anti-stick action. Provides a support surface for the discharge of the axial components of the forces

bioimpianti.it

